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Abstract

In this article, I compute the number of orbit spaces for finite spaces | X |< 4 using
Burnside's Counting Theorem. The group Homeo(X), consisting of all
homeomorphisms from a space X onto itself for | X |[< 4 ,is calculated using two
different methods that yield identical results. These findings contribute to the
understanding of the algebraic structure of finite spaces and their applications in
mathematics (Elmsmary, 2016).
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Introduction:

The object of this paper is to consider finite space, i.e. space having only a finite number of
points, through which we define orbit set and count it using Burnside Counting (Dummit &
Foote, 1999).

The space X/G is topologized by identification .Where X/G is called the orbit space (Kelley,
2008).

Let X be a space.Homeo(X) is the group of all homeomorphism form X to itself, defined as
Homeo(X) = {h|h : X - X is a homeomorphism} (Kono & Ushitaki, 2003).

In this paper, Homeo(X) has been computed for a finite space with small cardinality
(Kosnowski, 1980).

Then Homeo(X) is a group with respect to composition (ElImsmary, 2016).
Homeo(X can be made a topological group by using compact-open topology (Kelley, 2008).
Both methods of computing Homeo(X) yield the same result.

Although the direct method is easier in computations the other method is more important in
theoretical aspects (Kono & Ushitaki, 2003) of the subject.

Through this research paper can calculate Homeo(X), if it a space contains a large number of
elements (Kosnowski, 1980).

1. Homeomorphism Groups (Homeo (X)) and Group Actions:
Theorem 1 (Elmsmary, 2016):

Homeo(X) is a group under composition .

Remark:

Homeo(X) is called homeomorphism group of a space X.
Example (1):

Let X = {a, b, c} with topology t = {@, {a}, {b, c}, X}.

To find Homeo(X):

There are 3! = 6 one to one onto function from X to X.

The hoCmeomorphism are only id and h, where

id(a) =a id(b)="» id(c) =c

h(a) =a h(b) =c h(c)=0»b

Then Homeo(X)={id, h}

Then Homeo(X = Z,, the cyclic group of order 2.

Group Actions (Dummit & Foote, 1999):

A group G acts on a nonempty a set S, if there is a mapping :
Denoted by ¢(g,x) = g.x forany g € Gandany x € S ¢: G X S — S such that :
i) e.x = x.Where e is the identity of G .

ii) g.(h.x) = (gh).x, forany g,h € Gand any x € S.

Sisthus called a —Set .
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Let S be anonempty setand G = {f|f : S = S is 1 — 1 and onto function }.

The group G acts on the set as follows :

g.x=g(x)foranyg e Gandanyx € S .

Define a binary relation ~on Sby x~y if g.x =y .LetSbea G — Set .

For some € G .~ is an equivalence relation on S .The equivalence class of x € S is as follows:

(x]={y € S:y~x} ={y:9.x =y for some g € G} ={g.x: g € G} = G.x, which is called
the orbit of x . The orbit set is the quotient set.

S/G = {G.x: x € S}, the set of all orbits of the elements of S.

The projection is given by p: S — S/G, where p(x) = G.x itisonto.
Example (2):

Let S = {a, b, ¢, d} and the group of transformations of S is:

_(fa b ¢ dy(fa b ¢ d\ (a b c d a b ¢ d
= {(a b ¢ d)'(b a c¢ d)'(a b d c) '(b a d c)}
[a] =The orbits are :

G.a ={a,b},[b] =G.b ={a,b}and also [c] = [d] = {c, d}.
The orbit set S/G = {[a], [c]}.It has two orbits .

Theorem(Burnside Counting Theorem )(Dummit & Foote, 1999):

Let S be a G — Set .For g € G ,let S9 = {x € S: g.x = x}, the set of element fixed by g.
Then the number of orbits is given by :

/] = =S geclS9I.

IGI
Example (3):
Consider the previous example .
S = {a, b, ¢, d}.Denote the elements of the group G by id, a, 8, § respectively.
S = {a,b,c,d},5* = {c,d},S? = {a,b},5° = 0.By Burnside:
15/¢] = ézgea|sg| _ §(4 + 242+ 0) = 2 orbits.

2.Topological Group and Orbit Spaces:

G is a topological group ,if

1- Gisagroup.

2- G has a topology ,and

3- the following two function are continuous the multiplication u: G X G — G given by :
uCx,y) = xy forany x,y € G (Kelley, 2008). .

Example (4):

R is a topological group with respect to addition and usual topology.

Orbit Spaces:

Let X bea G — Set, define a relation ~ on X as follows:
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x~y iff there existsg € G such that g.x = y.

~ is an equivalence relation on X.

[X]={g€X, x~y}={yeY:gx =gy €G}.
= {g.x: g € G} = GX, the orbit space of X.

X/ = {G.x:x € X}, the set of all orbit and p: X — X/,
p(x) = G.x the projection (onto).

X/ is topologized by identification X/ .
X/G is called the orbit space (Kelley, 2008).
Example (5):

X ={ab,c} T ={0,{a},{b,c}, X}
f@=a, f(b)=c, f(c)=>.

G = Homeo(X) ={id, f} = Z,.

[a] ={g.a:9 € G} ={a}.

[b] ={g.b:g € G} = {b, c}.

[c] ={g.c:g € G} ={c,b}

Then X/ = {[a], [b] }, the orbit space.

The topology on X/G is7 = {0, {[al}, {[b]}, X/G .
3. Computation of Homeo(X):
Method (1):

In this method we compute the homeomorphism group Homeo(X) of a finite space X. We
consider the non equivalent topologies only. These are listed in( EImsmary (2016)).

Example(6) :

Take X = {a, b, ¢, d} and with topology 7 = {@, {a, b}, X}
id(a) =a idlb)=b id(c)=c id(d)=d
f@=b fB)=a fl)=c fld=d
g@=a gb)=b gl)=d gld=c
h(a)=b h(b)=a h(c)=d gd) =c

The orders of id, f,g,h <2 and |[Homeo(X)| = 4.
Then Homeo(X) = Z, X Z,

Method (2):

Let X={x;, x5, .. ... , X, } be a finite space , and

U; is minimal open set containing x,. i.e it is the intersection of all open sets containing
x;.Define the equivalence relation ~ on X as follows:
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X ={[X]:x € X} and V,: X — X ,the projection map (Kono & Ushitaki, 2003).
V.(x;) = U; U C;, where C; is the smallest closed set containing x; .Define
Homeo,(X) < Homeo(X).

The main result is as follows:

For a finite space X, the following is a split exact sequence:

1- [[jxe x Homeo([x]) 5 Homeo(X) — Homeox()?) — 1 (Kono & Ushitaki, 2003)
This can be written in terms of a semidirect product as follows:
Homeo(X) = (H[X]E)?Homeo([x])) X Homeox()?) . (Elmsmary, 2016)

Example(7):

Take X = {a, b, ¢, d} and with topology 7 = {@, {a, b}, X}
U, =X C, = {a, b}

U, =X Cp = {a, b}

U, = {c,d} C.=X

U; ={c,d} C;=X

Ve(la]) = U, N C, = {a, b} = [a, b]
Ve([b]) = Uy N Cp = {a, b} = [a, b]

Vx([c]) =U.NnC, = {C: d} = [C, d]
Ve([d]) = Uy n €y ={c,d} = [c,d]
Homeo,(X) = {f € Homeo(X): # f([x]) =# [x]} = {id}.

1_[ Homeo(X) = Homeo([a]) X Homeo([c]).
[x]le x

[a] = {a, b} € X, relative topology T = {@,{[a, b]}}
[c] = {c,d} S X, relative topology 7 = {®, {[c, d]}}
Homeo([a]) = Z,
Homeo([c]) = Z,

l_[ Homeo(X) = Z, X Z,.
[x]e x
Then Homeo(X) = {id} > (Z, X Z,)

=7y X Z,.

The groups Homeo(X) for non equivalent spaces X with |X| < 4 have been computed by the
two methods.

The results and number of orbits are given by the following table .
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|X| | Non-equivalent Topological spaces Homeo(X)| Number of
orbits | X/ |
1 T ={0,X} {id} 1
2 7, = {0, X} Z, 1
2 1, = {0,{a}, X} {id} 1
2 13 = {(Z), {a}r {b}! X} Zz 1
3 T, = {(D, X} Ss 1
3 T = {@; {b, C}, X} Zz 2
3 73 = {0, {c}, X} Z., 2
3 7, = {9,{c}, {c, b}, X} {id} 3
3 s = {®r {C}, {a, b}: X} ZZ 2
3 Te = {®! {C}, {a, C}! {b, C}, X} Zz 2
3 1, ={0,{c}, {b},{b, c}, X} Z, 2
3 T8 = {Qr {C}r {b}! {ar C}, {br C}r X} Z2 2
3 7o = {@,{a}, {c}, {b}.{a, c},{b, c},{a, b}, X} Ss 1
4 T = {@, X} S3 1
4 7, = {@,{b,c,d}, X} Ze 2
4 13 ={0,{c,d}, X} 7, X T, 2
4 7, ={0,{d}, X} e 2
4 s = {0,{c,d},{b,c,d}, X} Z, 3
4 Z. 1
Tg = {®! {b, C}, {a! d}, X} X Zz X Zz
4 17 = {Q)! {d}, {b, ¢ d}, X} ZZ 3
4 T8 = {®! {d}, {Cl, b! C}! X} Z6 2
4 Tg = {Q), {d}! {C, d}! X} ZZ 3
4 710 = {0,{c,d}, {b,c,d},{a,c,d}, X} Z., 3
4 11, ={8.{d}, {c,d},{b,c,d}, X} {id} 1
4 T12 = {@, {d}r {C! d}r {ar b, d}r X} Zz 3
4 T13 = {@, {d}! {b, C}, {b, ¢ d}! X} Zz 3
4 714 = {0,{c},{d},{c,d}, X} 7, X T, 2
4 T15 = {@, {d}! {C, d}! {b! C, d}, {a! c, d}! X} Zz 3
4 T16 = {0,{d},{c,d},{b,d},{b,c,d}, X} L, 3
4 T17 = {@, {d}r {br C}r {b! c d}, {ar ¢ d}, X} Zz 3
4 T18 = {Q, {d}, {b! C}, {(1, d}, {b! C, d}) X} Zz 3
4 T19 = {Q)r {C}! {d}r {C! d}r {b, ¢ d}, X} Zz 3
4 T20 = {Q! {C}! {d}, {C! d}! {Cl, b! d}, X} Zz 3
4 7,, = {@,{d},{c,d},{b,d},{b,c,d}{a, c, d}, X} {id} 4
4 T, = {0,{d},{c},{c,d},{b,c,d},{a,c,d}, X} Z, X T, 2
4 7,5 = {0,{d}, {c},{c,d},{b,d},{b,c,d} X} {id} 4
4 7,4 = {0,{d},{c},{c,d},{b,d},{b,c,d},{a,c, d}, X} {id} 4
4 7,5 = {0,{d},{c},{c,d},{b,d},{b,c,d},{a,b,d}, X} {id} 4
4 T, = {0,{d},{c},{c,d},{a,d},{a,b,d},{a,b,c} X} Z, X T, 2
4 Ty /B 2
={0,{d},{b,d},{c,d},{a,d},{b,c,d}{a,c d} {a b, d} X}
4 7,6 = {0,{d},{c},{c,d},{b,c},{a,d},{b,c,d} {a,c d} X} Z, 2
4 Ty = {@,{d}, {c}, {b},{c,d},{b,d}, {b,c},{b,c,d} X} L 2
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4 T30 Z, 3
= {0,{d},{c},{c,d},{b,d},{a,d},{b,c,d},{a,c,d} {a b, d},
4 T31 = {@, {d}, {C}, {b}, {C, d}, {b, C}, {b, C, d}) {a, c, d}! X} Z2 3
4 T32 = {®' {d}, {C}, {b}' {b, d}' {C, d}, {a, d}, {b' C}, {b, c, d}' {a, b, d}' X} Zz 3
4 | Tss S4 1
_ {Gi, {d}, {a}, {c}, {b},{a, b}, {a, c}, {b,d},{c,d},{a,d}, {b, c},{a, b, c},}
{a,c,d}, {b,c,d},{a,b,d}, X
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